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Introduction and Background
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Figure 1 Brush seal with various working loads
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Figure 2

@ (a) Depiction of partial

Back brush seal with front
Plate and back plate that
constrain bristle pack

Downsteam  (h) Section A-A view,
depicting the
compactive load g,
around bristle pack.
The interactive forces
of three fibers (1, 2,
3) are studied for
hysteresis
phenomenon
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Inter-bristle Friction
Model (cont'd)
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Figure 3

Three un-deformed
neighboring fibers
subjected to the
compactive load g,

Deformation of
fibers under
compactive load g..
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Inter-bristle Friction
Model (cont'd)
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Figure 4

(a) Segment of the deformed
fiber subjected to the
uniform compactive load
g. and traction force f, .
and fg . g

(b) simplified model
depicting interaction
between neighboring
bristles as uniformly
distributed moment m*
along deformed fiber
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Inter-bristle Friction MARQUETTE
Model---derivation of m”*
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Refer to Fig.3 and Fig.4:

1. Differential frictional force dfM and dfﬂ

d = ug.d
df s = HAN:dfy_y = N | s fan = g ds
dN =ds- g, dfy_p = Ug .ds

2. Differential moment dm:
dm=2ug r ds

3. Resisting bending moment m

m=2ug.r,L
4. Distributed bending moment per unit length m

M o
If Hexagaonal closed-pack, then m - u 1, (1+2cos60)
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Governing Equation

According to Euler-Bernoulli Law:

. do
EIK:Mm*+MFm with K=—

:ds

Governing Equation:

a9 =m —F__ cos(a—u—q)

2 res

EI

ds

Non-dimensional form of governing equation:

%2

d’¢ _m*H*2 F_H

= -~ cos(@— 1~ )

0 EI EI
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Boundary conditions and
constraint conditions

Boundary conditions:
1. slope constraint at the bristle origin, i.e.
®=0 at s=0

2. Free of moment at the bristle tip, i.e.
d®/ds=0 at s=L

Constraint conditions:

X —x§‘<g; yt—y§‘<€

t

Where,

L L
X, = Icos¢ds;yt = Isin ¢ds .
0 0 ye = R sin(0 +

<
RS
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x: = (R, +H —A )cosO—R, cos(6?+R£)

)—(R,+H —A)sin6
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Eccentricity of Shaft

Position of shaft
surface at offset
eccentric distance +e

X-section of
centally

Bristle aligned shaft

fibers

Position of shaft
surface at offset
eccentric
distance -e
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Figure 5

Eccentric
movement of
rotor and
displacement of
bristle pack



I"TOA/SS9€1T-S00T—dD/VSVN

81¢

res

F HZ%E

i

MARQUETIE
Numerical Results and Discussion
03 Figure 6
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Figure 7 (@) Relationship between dimensionless contact force and
dimensionless penetration depth for ;1 =0, 0.045, 0.090, 0.135. (Results
shown are for R;/H*=8.9, 6=45°; (b) relationship between A /H* and non-
dimensional bending moment m
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Figure 8 (a) Relationship between dimensionless contact force and
dimensionless penetration depth for 8=15, 30 and 45 degrees.
(Results shown are for a bristle with R/H*=8.9, A" =0, m =0.135)
and (b) Relationship between A /H" and bristle lay angle 6
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Conclusions/Summary

The micro-moment can give rise to a delayed
filament displacement as the shaft undergoes
transient excursion and moves radially toward
bristle pack (uploading).

However, as the shaft returns back to its concentric
position (downloading), the filament CANNOT
completely recover from its deformed position and
remains locked in an alternate configuration.

Consequently, an annular gap is generated
between the fiber tips and shaft surface, which
promotes brush seal leakage and reduces turbo-
machinery performance.
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Conclusions/Summary MARQUETTE
(cont'd)

= In general, for a given brush seal, the annular gap
increases linearly as the micro moment m* is
increased.

= The brush seal having a shallowest lay angle (15°)
results in the smallest annular gap, indicating that a
brush seal design with shallow lay angle is least
prone to hysteresis phenomenon, and can lead to
improved performance.





